

Annual Drinking Water Quality Report for 2020
Town of Fallsburg Water Department
PO Box 2019
South Fallsburg, New York 12779
Fallsburg WHO-LS-SF System
Public Water Supply ID# 5203324

INTRODUCTION

To comply with State regulations, the Town of Fallsburg Water Department will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

If you have any questions about this report or concerning your drinking water, please contact Chet Williams Jr, Lab.Director, at 845-434-6320. We want you to be informed about your drinking water. If you want to learn more, please attend any of our regularly scheduled Town Board meetings. The meetings are held on Mondays at 6:00 PM at the Town Hall.

WHERE DOES OUR WATER COME FROM?

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Our water source is 16 groundwater wells which are located throughout the Town of Fallsburg. The Source Water Assessment indicates that the Town's source water is minimally susceptible to contamination. During 2020, our system did not experience any restriction of our water source. The water is adjusted for pH and disinfected prior to distribution.

FACTS AND FIGURES

Our water system serves approximately 7,850 people during the winter and approximately 18,500 people during the summer through approximately 2,950 service connections. The total water produced in 2020 was 558,377,000 gallons. The daily average of water treated and pumped into the distribution system was 1,530,854 gallons per day. Our highest single day was 3,697,000 gallons. The amount of water delivered to customers was 421,081,000 gallons. Authorized unmetered usage was approximately 68,648,000. This water was used to flush mains, fight fires and other distribution system maintenance. This leaves an unaccounted for total of 68,648,000 gallons. In order to reduce the amount of unaccounted for water, leak detection and water audit programs are performed annually. Numerous leaks were detected and repaired this year. In 2020, water customers paid a quarterly minimum of \$43.86 for 15,000 gallons and were charged \$2.96 per thousand gallons above the minimum.

ARE THERE CONTAMINANTS IN OUR DRINKING WATER?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants may include: total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old. It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Monticello District Office of the New York State Department of Health Department at 845-794-2045.

Table of Detected Contaminants

Contaminant	Violation Yes/No	Date of Sample	Level Detected (Average / Maximum) (Range)	Unit of Measurement	MCL/ AL	MCL G	Likely Source of Contamination
Arsenic ₁	No	2/19/2020 to 11/9/2020	0.00137 - Average 0.0029 - Maximum <0.0010 - 0.0029 Range	mg/L	0.01	N/A	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium ₂	No	6/2019 to 12/2019	0.130 - Average 0.34 - Maximum 0.059 - 0.34 - Range	mg/L	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Nickel	No	6/2019 to 12/2019	0.0010 - Average 0.0032 - Maximum 0.0005 - 0.0032 - Range	mg/L	N/A	N/A	
Nitrate ₃	No	2/19/20 to 11/9/2020	0.311 - Average 0.801 - Maximum <0.05 - 0.801 - Range	mg/L	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Sodium ₄	No	7/2019 to 12/2019	33.5 - Average 72.4 - Maximum 10.3 - 72.4 - Range	mg/L	See Notes	N/A	Naturally occurring; Road salt; Water softeners; Animal waste.
Fluoride ₅	No	6/2019 to 12/2019	<0.200 - Average <0.200 - Maximum <0.200 Minimum	mg/L	2.2	N/A	Erosion of natural deposits; Water additive that promotes strong teeth; Discharge from fertilizer and aluminum factories.
Lead ₇	No	8/2019	90 th percentile: 0.0052 ₆ Range: 0 - 0.0709 One ALE	mg/L	0.015	0	Corrosion of household plumbing systems; Erosion of natural deposits.
Copper ₉	No	8/2019	90 th percentile: 1.04 ₈ Range: 0.0987 - 1.55 One ALE	mg/L	1.3	1.3	Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives.
Total Trihalomethane ₁₀	No	8/2019 to 10/2019	31.5 - Maximum 3.31 - 33.4 - Range 22.60 - Average	ug/l	80	N/A	By-product of drinking water disinfection needed to kill harmful organisms.
Total Haloacetic Acid ₁₁	No	8/2019 to 10/2019	13.9 - Maximum 3.8 - 13.9 - Range 8.85 - Average	ug/l	60	N/A	By-product of drinking water disinfection needed to kill harmful organisms.
Chromium ₁₂	No	6/2019 to 12/2019	<0.0010 Maximum <0.0010 Minimum	ug/L	100	100	Discharge from steel and pulp mills; Erosion of natural deposits.
Iron ₁₃	No	8/2016	89 - Maximum 85 - 89 - Range 87 - Average	ug/L	300	NA	Naturally occurring.
Gross Alpha ₁₄	No	2/2016 to 6/2016	4.06 - Maximum 0.039 - 4.06 - Range 1.19 - Average	pCi/L	15	0	Erosion of natural deposits.
Gross Beta ₁₅	No	2/2016 to 6/2016	2.98 - Maximum 0.031 - 2.98 - Range 1.46 - Average	pCi/L	4	0	Decay of natural deposits and man-made emissions.
Radium 226 ₁₆	No	3/2016 to 6/2016	0.914 - Maximum ND - 0.914 - Range 0.32 - Average	pCi/L	2.5	0	Erosion of natural deposits.
Radium 228 ₁₆	No	3/2016 to 6/2016	1.92 - Maximum .0294 - 1.92 - Range 0.71 - Average	pCi/L	2.5	0	Erosion of natural deposits.
Manganese ₁₇	No	8/2016	0.274 - Average 0.333 - Maximum 0.214 - 0.333 - Range	mg/L	300	NA	Naturally occurring; Indicative of landfill contamination.
Antimony ₁₈	No	7/18/19	0.0004 - Maximum 0.0004 - Minimum	mg/L	0.006	0.006	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder.
Thallium ₁₉	No	2/19/20 to 11/9/20	<0.0003 - Maximum <0.0003 - Minimum	mg/L	0.006	0.000 5	Leaching from ore processing sites; Discharge from electronics, glass, and drug factories.
1,4 - Dioxane	No	10/26/20 To 11/9/20	ND - Minimum 0.083 - Maximum	ug/L	1	N/A	Released into the environment from widespread use in commercial and industrial applications

Perfluorooctanic Acid (PFOA)	Yes	10/26/20 to 11/9/20	<1.7 – Minimum 14.0 - Maximum	ng/L	10	N/A	Released into the environment from widespread use in commercial and industrial applications
Perfluorooctane sulfonic acid (PFOS)	No	10/26/20 to 11/9/20	<1.7 – Minimum 8.00 - Maximum	ng/L	10	N/A	Released into the environment from widespread use in commercial and industrial applications
bis (2-Ethylhexyl)phthalate	No	07/14/20	0.07 - Maximum	ug/L	6	0	Primarily as a plasticizer in many products, including polyvinyl chloride (PVC), rubber, cellulose, and styrene. DEHP most often arrives in drinking water through discharge from rubber and chemical factories.

Table of Unregulated Contaminants

Contaminant	Violation Yes/No	Date of Sample	Level Detected (Average / Maximum) (Range)	Unit of Measurement	MCL/ AL	MCL G	Likely Source of Contamination
Perfluorobutane sulfonic acid (PFBS)	No	05/31/19	0.33 - Maximum	ng/l	N/A	N/A	Released into the environment from widespread use in commercial and industrial applications
Perfluorohexane sulfonic acid (PHFxS)	No	05/31/19	2.6 - Maximum	ng/L	N/A	N/A	Released into the environment from widespread use in commercial and industrial applications
Perfluorononanoic acid (PFNA)	No	05/31/19	7.9 - Maximum	ng/l	N/A	N/A	Released into the environment from widespread use in commercial and industrial applications
N-Methyl perfluorooctane	No	05/31/19	7.6 - Maximum	ng/L	N/A	N/A	Released into the environment from widespread use in commercial and industrial applications
Perfluoroheptanoic Acid (PFHPA)	No	05/31/19	2.1 - Maximum	ng/L	N/A	N/A	Released into the environment from widespread use in commercial and industrial applications.

Notes:

1 - Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

2 - Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure.

3 - Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

Notes cont'd:

4 - Water containing more than 20 mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium diets.

5 - Some people who drink water containing fluoride in excess of the MCL over many years could get bone disease, including pain and tenderness of the bones. Children may get mottled teeth.

6 - The level presented represents the 90th percentile of the 20 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead values detected at your water system. In this case, twenty two samples were collected at your water system and the 90th percentile value was the eighteenth highest value.

7 - Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

8 - The level presented represents the 90th percentile of the 20 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system. In this case, 20 samples were collected at your water system and the 90th percentile value was the eighteenth highest value.

9 - Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's disease should consult their personal doctor.

10 - Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer

11 - Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

12 - Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.

13 - Iron has no health effects. At 1,000 ug/l a substantial number of people will note the bitter astringent taste of iron. Also, at this concentration, it imparts a brownish color to laundered clothing and stains plumbing fixtures with a characteristic rust color. Staining can result at levels of 50 ug/l, lower than those detectable to taste buds. Therefore, the MCL of 300 ug/l represents a reasonable compromise as adverse aesthetic effects are minimized at this level. Many multivitamins may contain 3,000 or 4,000 micrograms of iron per capsule.

14 - Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

15 - Certain materials are radioactive and may emit forms of radiation known as photons and beta radiation. Some people who drink water containing beta and photon emitters in excess of the MCL over many years may have an increased risk of getting cancer.

16 - Some people who drink water containing radium 226 or 228 in excess of the MCL over many years may have an increased risk of getting cancer.

17 - The Food and Nutrition Board of the National Research Council determined an estimated safe and adequate daily dietary intake of manganese to be 2,000-5,000 micrograms for adults. However, many people's diets lead them to consume even higher amounts of manganese, especially those who consume high amounts of vegetable or are vegetarian. The infant population is of greatest concern. It would be better if the drinking water were not used to make infant formula since it already contains iron and manganese. Excess manganese produces a brownish color in laundered goods and impairs the taste of tea, coffee, and other beverages. Concentrations may cause a dark brown or black stain on porcelain plumbing fixtures. As with iron, manganese may form a coating on distribution pipes. These may slough off, causing brown blotches on laundered clothing or black particles in the water.

18 - Some people who drink water containing antimony well in excess of the MCL over many years could experience increases in blood cholesterol and decreases in blood sugar.

19 - Some people who drink water containing thallium in excess of the MCL over many years could experience hair loss, changes in their blood, or problems with their kidneys, intestines, or liver

- **Lead.** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. The Town of Fallsburg is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Action Level Exceedance (ALE): when lead or copper sample reaches highest allowable limit for 90th percentile result

WHAT DOES THIS INFORMATION MEAN?

As you can see by the table, our system had one violation.. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below the level allowed by the State. PFOA Causes range of health effects when studied in animals at high exposer levels. Effects on liver and immune system and impaired fetal

growth and development. Studies of high levels exposures to PFOA in people provide evidence that some of the health effects seen in animals may occur in humans.

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

During 2020, our system was in compliance with applicable State drinking water operating, monitoring and reporting requirements.

SOURCE WATER ASSESSMENT SUMMARY

The New York State Department Health has completed a source water assessment for this water system, based on available information. Possible and actual threats to our drinking water sources were evaluated. The state source water assessment includes a susceptibility rating on the risk posed by each potential source of contamination (PCS) and the possibility of this contamination reaching our drinking water source. The susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is, or will be contaminated. See section "Are there contaminants in our drinking water?" for a list of contaminants that have been detected. The purpose of source water assessment is to provide resource managers with additional information for protecting source waters in the future. The source water assessment for the Town water sources found that the assessment area contains no discreet potential; source for contamination. Please note that this report only details the possibility for contamination. Our water is tested regularly to ensure that the finished water coming to your home meets New York State drinking water standards. County and State Health Departments will use this information to direct future source water protections activities. These may include water quality monitoring, resource management and education programs. Further information can be obtained by contacting the Town of Fallsburg, 5410 State Route 42 South Fallsburg, NY or by phone at 845-434-6320

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water:

- ◆ Saving water saves energy and some of the costs associated with both of these necessities of life;
- ◆ Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and
- ◆ Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire fighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

- ◆ Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- ◆ Turn off the tap when brushing your teeth.
- ◆ Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- ◆ Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.
- ◆ Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances, and then check the meter after 15 minutes. If it moved, you have a leak.

CLOSING

Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers help us protect our water sources, which are the heart of our community. Please call our office if you have questions. This report was prepared by Chet Williams Jr

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Spanish	French
Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.	Ce rapport contient des informations importantes sur votre eau potable. Traduisez-le ou parlez en avec quelqu'un qui le comprend bien.

Korean

아래의 보고는 귀하께서 드시는 식수에 대한 중요한 정보가 포함되어 있습니다.
본문은 핵심문이 아니면 이 보고를 읽고 이해하시는 분과
알수하기를 바랍니다.

Chinese

這份報告含有非常重要的關於喝的水
的資料。請找懂得這份報告的人翻譯
或解釋給您聽。